Reg.No.:					
----------	--	--	--	--	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN JAUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY. CHENNAIJ Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 2003

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – DECEMBER 2019 First Semester

Computer Science and Engineering U19MA101 – CALCULUS

(Common to Electrical and Electronics Engineering, Electronics and Communication Engineering, Information Technology & Biotechnology) (Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

PART - A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x 6$, in powers of (x 1)
- 2. Give an example to justify that, "the failure of differentiability implies the failure of mean value property".
- 3. z = f(u) is a homogeneous function of x and y of degree n, and first order partial derivatives of z exist, and are continuous then prove that $xu_x + yu_y = n\frac{f(u)}{f'(u)}$.
- 4. If $f(x, y) = tan^{-1}(xy)$, find an linearly approximate value of f(1.1, 0.8) using Taylor's series.
- 5. Show that the value of $\int_0^1 \sin(x^2) dx$ cannot possibly be 2.
- 6. If f is a continuous function, find the value of the integral, $I = \int_0^a \frac{f(x)dx}{f(x) + f(a x)}.$
- 7. Convert a rectangular coordinates $(-\sqrt{2}, \sqrt{2}, 1)$ into a cylindrical coordinates.
- 8. Find the volume of a solid generated by the revolution of the cardioid $r = a(1 + cos\theta)$ about the initial line.
- 9. If the two roots of an auxiliary equation with real coefficients are $3 \pm i$, then identify the corresponding homogeneous linear differential equation.

10. Why the method of variation of parameters is called so?

PART – B $(5 \times 16 = 80 \text{ Marks})$

- 11. a) i. The Taylor's series of any sufficiently differentiable function can be written as $g(x) = P_n(x) + R_n(x)$, where $P_n(x)$ is the polynomial of order n and $R_n(x)$ is the remainder term. Write the formula for $R_n(x)$ and if g(x) = cos(x), then prove that $R_2(x) \ge 0$, for $|x| \le \pi$. (2+2+2)
 - ii. Write Leibnitz's theorem for n^{th} derivative of the product of two functions. If $y = log\{x + \sqrt{(1+x^2)}\}^2$, then prove that $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$. Hence show that $(y_{2k+1})_0 = (-1)^k \frac{(2k!)^2}{2^{2k-1}(k!)^2}$, where k is a positive integer.

(2+4+4)

(OR)

- b) i. Show that among all rectangles that can be inscribed in a given circle, the square has the greatest area. (8)
 - ii. Let $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1 - x & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is continuous at the point a if and only if $a = \frac{1}{2}$. (8)

12. a) Find the directional derivative(s) of $f(x, y) = x^2 + y^2$ at (3, 4) in the direction of the tangent vector to $2x^2 + y^2 = 9$ at (2, 1).

b) i. If
$$ln(u^2 + v)$$
, $u = e^{x+y^2}$, $v = x + y^2$, then show that $2y\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$. (8)

- ii. Find the absolute maximum and minimum values of the function $f(x, y) = 3x^2 + y^2$. (8)
- 13. a) i. Evaluate $\int_0^1 x^{3/2} (1-x)^{3/2} dx$. (8)
 - ii. Find the reduction formula for $l_n = \int e^{ax} \sin^n x dx$, then deduce the value of l_3 for a = 1. (8)

- b) Find the area of the region in the first quadrant bounded by the curves $x = 2\sqrt{y}$, $x = (y 1)^2$ and x = 3 y by integration.
- 14. a) i. Change the order of integration in the integral $\int_0^{\pi/2} \int_x^{\pi/2} \frac{\sin y}{y} dy dx \text{ and hence evaluate it.}$ (6)
 - ii. Find the volume of the solid enclosed by the paraboloid $x = y^2 + z^2$ and the plane x = 16 by triple integration. (10)
 - b) Find the volume of the given solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes y = z, x = 0, z = 0 in the first octant by double integration.
- 15. a) i. Solve the given initial value problem, $y'' + 4y = g(x), \ y(0) = 1, y'(0) = 2,$ where $g(x) = \begin{cases} sinx, \ 0 \le x < \frac{\pi}{2} \\ 0, \ x > \frac{\pi}{2} \end{cases}$ (8)
 - ii. Find the solution of the differential equation $(D^2 + a^2)y = secax$, using method of variation of parameters.(8) (OR)
 - b) Find the general solution of the differential equation $x^2y'' 3xy' + 3y = 2x^4e^x$.

